SE250:lab-7:sbas046
Inserting A-G in a perfect balancing order.
> i d d (*) > i b b d (*) > i a a b d (*) > i c a b c d (*) > i f a b c d (*) f > i e a b c d (*) e f > i g a b c d (*) e f g
You would always get a perfectly balanced tree if you entered the median of the range of numbers then the median of the range of numbers lower then the first number and so on.
Right Skew -> Left Skew
> skew a (*) b c d e f g > r l a (*) b c d e f g > print Tree[*a*,b,c,d,e,f,g] >
> print Tree[*a*,b,c,d,e,f,g] > skew a (*) b c d e f g > rl a (*) b c d e f g > parent a b (*) c d e f g > rl a b (*) c d e f g > parent a b c (*) d e f g > rl a b c (*) d e f g > parent a b c d (*) e f g > rl a b c d (*) e f g > parent a b c d e (*) f g > rl a b c d e (*) f g > parent a b c d e f (*) g > rl a b c d e f (*) g >
Right Skew -> Balance
> skew a (*) b c d e f g > rl a (*) b c d e f g > p a b (*) c d e f g > rl a b (*) c d e f g > p a b c (*) d e f g > rl a b c (*) d e f g > rr a b c (*) d e f g > p a b c d (*) e f g > r a b c d e (*) f g > rl a b c d e (*) f g >
Add elements and Balance
> i 1 1 (*) > i 2 1 (*) 2 > i 3 1 (*) 2 3 > i 4 1 (*) 2 3 4 > i 5 1 (*) 2 3 4 5 > i 6 1 (*) 2 3 4 5 6 > i 7 1 (*) 2 3 4 5 6 7 > balance 1 2 3 4 (*) 5 6 7 > i 8 1 2 3 4 (*) 5 6 7 8 > i 9 1 2 3 4 (*) 5 6 7 8 9 > r 1 2 3 4 5 6 (*) 7 8 9 > r 1 2 3 4 5 6 7 (*) 8 9 > rr 1 2 3 4 5 6 7 (*) 8 9 > rl 1 2 3 4 5 6 7 (*) 8 9 >